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Amplitude Scintillation due to Atmospheric
Turbulence for the Deep Space Network

Ka-Band Downlink
C. Ho1 and A. Wheelon2

Fast amplitude variations due to atmospheric scintillation are the main concerns
for the Deep Space Network (DSN) Ka-band downlink under clear weather con-
ditions. A theoretical study of the amplitude scintillation variances for a finite
aperture antenna is presented. Amplitude variances for weak scattering scenarios
are examined using turbulence theory to describe atmospheric irregularities. We
first apply the Kolmogorov turbulent spectrum to a point receiver for three dif-
ferent turbulent profile models, especially for an exponential model varying with
altitude. These analytic solutions then are extended to a receiver with a finite
aperture antenna for the three profile models. Smoothing effects of antenna aper-
ture are expressed by gain factors. A group of scaling factor relations is derived to
show the dependences of amplitude variances on signal wavelength, antenna size,
and elevation angle. Finally, we use these analytic solutions to estimate the scin-
tillation intensity for a DSN Goldstone 34-m receiving station. We find that the
(rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponen-
tial model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in
telecommunication system design and signal-fading prediction. They also provide
a theoretical basis for further comparison with other measurements at Ka-band.

I. Introduction

Turbulent irregularities exist in the Earth’s lower atmosphere—the troposphere. These mixed air
masses act as moving parcels with various sizes, randomly varying in space and time. The parcels of
air usually have different temperature, density, humidity, and pressure across their spans. Thus, there
are different refractive indexes across them. When radio waves pass through these turbulent cells, their
propagation directions and path lengths are altered due to diffraction and scattering. Rapid variations
of signals in phase and amplitude thus occur. The wavefront becomes tilted and crinkled in a plane
perpendicular to the propagation path. As a result, received signals from all directions and for all
instantaneous components are superimposed. This results in the signal being enhanced or diminished
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in both phase and amplitude. Random fast fluctuations around the average of field strength are called
amplitude scintillations and are the subject of this article.

It is generally known that scintillation intensity (also called fading depth) and signal amplitude increase
significantly with increasing signal frequency. This is because the atmosphere has many more turbulent
cells with small sizes than larger ones. When the wavelengths of radio signals match the Fresnel lengths
of the cells, the scintillation effects become intense. Thus, 32-GHz (Ka-band) signals are expected to
have larger fluctuations than those around 8.4 GHz (X-band) and around 2.0 GHz (S-band). The fading
depths also increase rapidly with decreasing elevation angles. Because a low elevation path corresponds
to a longer atmospheric column, more turbulent cells are included in the propagation path. However, the
antenna size tends to reduce scintillation effects since the influence of small turbulent cells is averaged
out by large apertures.

Atmospheric scintillations have been extensively studied in both experiments and theories through the
last half century [1–4]. A variety of scintillation models have been developed. Turbulence theory becomes
the essential in understanding refractive irregularities in the lower atmosphere. The Kolmogorov model is
able to explain the most important features of turbulence which cause the perturbation of radio waves. In
order to increase the transmission bandwidth, NASA is going to upgrade its Deep Space Network (DSN)
downlink frequency to Ka-band. Under fair weather conditions, amplitude variations due to atmospheric
scintillation will become the main concern most of the time. This is because fast and deep fadings can
cause receiver loss of lock. Under clear weather, at Ka-band the dominant perturbation on receiving
signals will come from the scintillation effects. We need to understand how severely this will impact on
amplitude variances and how fast the fading can be caused at Ka-band.

In this article, we will revisit turbulence theory to understand how the atmospheric turbulences cause
the scintillation for an antenna with finite aperture. Such a detailed investigation for a large antenna at
Ka-band has not been done, primarily due to the lack of experiments and applications. For example, if
a large antenna aperture can smooth the influence of small turbulent eddies, how much will amplitude
variances be reduced? We will start from the random wave equation to develop an analytic solution for a
point receiver. Then we will apply the solution to three profile models to describe the height-dependent
variation of atmospheric turbulence and then integrate each over a large antenna area. We will apply the
Kolmogorov turbulent spectrum into a DSN Ka-band downlink scenario to calculate amplitude variances
for the Goldstone receiver. We will re-examine the dependences of amplitude scintillations on frequency,
elevation angle, and antenna size for DSN receivers. This study will provide a theoretical basis for any
further comparison study with Ka-band measurements. We also extend this study to an exponential
profile model, which has not previously been explored.

II. Turbulence Theory

When radio waves pass through the turbulent atmospheric media, the instability of the electric field
amplitude is affected by the medium’s dielectric constant variance (assuming that the atmosphere has
a homogeneous composition, but inhomogeneous temperature and pressure). The relation can be found
through solving the following random wave equation:

∇2E + k2
[
1 + δε(r, t)

]
E = 0 (1)

This results from Maxwell’s equations for the electromagnetic field [1, Section 2.1, pp. 6–10]. Using the
Rytov approximation to solve this equation for a small δε perturbation in the dielectric constant ε, the
electric field strength expression becomes [2, Section 2.2, p. 14–19]
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E(R) = E0(R) exp
[
−k2

∫
d3rδε(r)A(R, r)

]
(2)

where

A(R, r) = �
[
G(R, r)

E0(r)
E0(R)

]
(3)

is the real part of the Green function G(R, r) and the ratio of electric fields. We emphasize the natural
logarithmic of the amplitude fluctuation:

χ = ln
(

E

E0

)

Fluctuations of the field strength ∆E are small compared to E0 since microwave propagation is described
as weak scattering:

χ = ln
(

E0 + ∆E

E0

)
= ln

(
1 +

∆E

E0

)
≈ ∆E

E0
< 1 (4)

Thus, from Eq. (2),

χ = −k2

∫
d3rδε(r)A(R, r) < 1 (Np) (5)

If converting χ into decibel units, we have utilized the following relationships:

χ(dB) = (10 log10 e)χ(Np) = 4.34χ(Np) (6)

〈
χ2

〉
(dB)2 = (10 log10 e)2

〈
χ2

〉
(Np)2 = 18.84

〈
χ2

〉
(Np)2 (7)

Because the amplitude fluctuations are referred to their mean value, the ensemble average (represented
by an angle bracket) of the amplitude fluctuation vanishes:

〈χ〉 = 0 (8)

Its mean-square value is not zero, and we can use Eq. (5) to describe the scintillation intensity:

〈
χ2

〉
= k4

∫
d3r

∫
d3r′A(R, r)A′(R, r′) 〈δε(r, t)δε(r′, t)〉 (Np)2 (9)

Because ε = n2, we can write δε = 2n0δn. When n0 = 1, this becomes δε = 2δn, and

〈δε(r, t)δε(r′, t)〉 = 4 〈δn(r, t)δn(r′, t)〉 (10)
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We know that, in the r ←→ κ domain [1, Section 2.2.5, pp. 21–23], a three-dimensional Fourier
transform connects the spatial covariance of refractive index fluctuations Bn(r) and the wavenumber
spectrum of irregularities Φn(κ):

Bn(r, r′) = 〈δn(r, t)δn(r′, t)〉 =
∫

d3κΦn(κ) exp
[
iκ · (r − r′)

]
(11)

The refractive-index structure function is defined as

Dn(ρρρ) =
〈[

δn(r, t) − δn(r + ρρρ, t)
]2〉 (12)

and is often approximated by the following approximation due to Kolmogorov:

Dn(ρρρ) = C2
n |ρρρ|2/3 (13)

where C2
n is the refractive-index structure constant and ρρρ is the spatial difference between two points r and

r′. Previous studies usually have assumed a uniform atmosphere so that C2
n is a constant independent of

altitude. In this article, we will consider three different altitude profiles of C2
n so as to better characterize

the real atmosphere. Based on the 2/3 power law on the spatial separation, the wavenumber spectrum
of irregularities, Φn(κ) for the Kolmogorov refractivity model is expressed as

Φn(κ, z) = 0.033C2
n(z)κ−(11/3), 0 < κ < ∞ (14)

III. Amplitude Variance for a Point Receiver

Consider the vertically downward propagating microwave shown in Fig. 1. After encountering a turbu-
lent eddy, the signal will be diffracted with a small angle θ. In this article, we consider only weak forward
scattering. This means that θ = λ/l 	 1, where λ is the wavelength of the radio signal (∼0.01 m) and l is
the size of the turbulent cell. Notice that the first Fresnel length is given by fL =

√
λz. The wavelength

of the signal is much less than the size of the turbulent eddies. Because θ 	 1 (about 1 mrad), and r 	 z
in Fig. 1, the downcoming wave stays quite close to the vertical axis. This condition is called the paraxial
approximation. The coordinates used in this article are shown in Fig. 2.

For an overhead source, we use the cylindrical coordinates identified in the figure with the point
receiver placed at the origin, R = 0:

E(r) = E0 exp(−ikz) (15)

E(R) = E0 (16)

G(R, r) =
1

4πρ
exp(ikρ) (17)

where ρ =
√

z2 + r2. Both displacement vector ( ρρρ ) and turbulent wavenumber vector ( κκκ ) in cylindrical
coordinates are expressed as
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Fig. 1.  Geometry showing how a micro-
wave passing through a turbulent refrac-
tivity eddy is scattered to the receiver.
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Fig. 2. Coordinate systems describing the displacement vector
ρ and the turbulent wavenumber vector κ.
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ρρρ = ziiiz + r cos φiiix + r sinφiiiy (18)

κκκ = κziiiz + κr cos ωiiix + κr sinωiiiy (19)

Thus, for the amplitude weighting function introduced in Eq. (5), we have

A(R, r) = �
[

exp
(
ik
√

z2 + r2
)

4π
√

z2 + r2

E0 exp(−ikz)
E0

]
(20)

In order to get an analytic solution and in view of the small-angle scattering indicated by Fig. 1, we can
expand the square-root distance as follows:

√
z2 + r2 = z

√
1 +

r2

z2
≈ z +

r2

2z

In the numerator of Eq. (20), we must keep both terms but need only the first in the denominator. The
amplitude weighting function thus becomes

A(R, r) = �




exp
(

ikz + ik
r2

2z

)
4πz

exp(−ikz)




or

A(R, r) =
1

4πz
cos

(
k

r2

2z

)
(21)

With this simplified expression, from Eqs. (9) and (10), we can write the variance of logarithmic
amplitude fluctuations as

〈
χ2

〉
=

k4

4π2

∫ ∞

0

dz1

z1

∫ 2π

0

dφ1

∫ ∞

0

r1dr1 cos
(

kr2
1

2z1

) ∫ ∞

0

dz2

z2

×
∫ 2π

0

dφ2

∫ ∞

0

r2dr2 cos
(

kr2
2

2z2

)
〈δn(ρρρ1)δn(ρρρ2)〉 (22)

In spherical wavenumber coordinates, the spatial covariance of refractive index fluctuations can be ex-
pressed as follows:

〈δn(ρρρ1)δn(ρρρ2)〉 =
∫

d3κΦn

(
κ,

z1 + z2

2

)
exp[iκ · |ρρρ1 − ρρρ2|]

=
∫ ∞

0

κ2dκ

∫ π

0

dψ sin ψΦn

(
κ,

z1 + z2

2

) ∫ 2π

0

dω

× exp
{
i
[
z1κ cos ψ + r1κ sinψ cos(φ1 − ω)

]
− i

[
z1κ cos ψ + r1κ cos ψ cos(φ2 − ω)

]}
(23)
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where we have allowed the turbulent spectrum to vary with wavenumber and the average height of the
irregularities. Thus,

〈
χ2

〉
=

k4

4π2

∫ ∞

0

dz1

z1

∫ ∞

0

dz2

z2

∫ ∞

0

r1dr1

∫ ∞

0

r2dr2

∫ ∞

0

κ2dκ

∫ π

0

dψ sinψΦn

(
κ,

z1 + z2

2

)

× cos
(

kr2
1

2z1

)
exp(iz1κ cos ψ) cos

(
kr2

2

2z2

)
exp(−iz2κ cos ψ)

∫ 2π

0

dω

×
∫ 2π

0

exp
[
r1κ sinψ cos(φ1 − ω)

]
dφ1

∫ 2π

0

exp
[
r2κ sinψ cos(φ2 − ω)

]
dφ2 (24)

Using the integral relation Eq. (A-1) in Appendix A to integrate dφ1dφ2dω, we can reduce this as follows:

〈
χ2

〉
= 2πk4

∫ ∞

0

κ2dκ

∫ π

0

dψ sinψ

×
∫ ∞

0

dz1

z1

∫ ∞

0

dz2

z2
exp

[
i(z1 − z2)κ cos ψ

]
Φn

(
κ,

z1 + z2

2

)

×
∫ ∞

0

r1dr1 cos
(

kr2
1

2z1

)
J0(r1κ sinψ) ×

∫ ∞

0

r2dr2 cos
(

kr2
2

2z2

)
J0(r2κ sinψ) (25)

Using the relation Eq. (A-2) in Appendix A, we can perform the radial integrations to find

〈
χ2

〉
= 2πk2

∫ ∞

0

κ2dκ

∫ π

0

dψ sinψ

∫ ∞

0

dz1

∫ ∞

0

dz2 exp
[
iκ cos ψ(z1 − z2)

]

× sin
(

z1κ
2 sin2 ψ

2k

)
sin

(
z2κ

2 sin2 ψ

2k

)
Φn

(
κ,

z1 + z2

2

)
(26)

The variation of the exponential term is very rapid and destructive unless the values of z1 and z2 are
very close to each other. This lets us approximate the double integral as follows:

∫ ∞

0

dz1

∫ ∞

0

dz2 exp
[
iκ cos ψ(z1 − z2)

]
F (z1, z2) � 2πδ (κ cos ψ) F (z, z) (27)

where

z =
z1 + z2

2

where we exploit the Delta function relations provided in Eqs. (A-5) through (A-7) in Appendix A to
write
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〈
χ2

〉
= 4π2k2

∫ ∞

0

κdκ

∫ π

0

dψ sinψΦn(κ, z)
∫ ∞

0

δ(cos ψ) sin2

(
zκ2 sin2 ψ

2k

)
dz (28)

Since the delta function requires that cosψ = 0 and sinψ = 1, we have finally

〈
χ2

〉
= 4π2k2

∫ ∞

0

κdκΦn(κ, z)
∫ ∞

0

sin
(

zκ2

2k

)
dz (29)

IV. Results for Three Turbulent Profiles

We will apply the Kolmogorov spectrum to describe the turbulent irregularities for a point receiver. In
doing so, we consider three profile models to describe the altitude variation of turbulence strength, as rep-
resented in the parameter C2

n. The profile models are (1) uniform slab, (2) thin layer, and (3) exponential.
They are illustrated in Fig. 3.

A. Slab Model

In this case, we assume that all atmospheric turbulent eddies are of uniform strength and contained
within a limited height, H:

C2
n(z) = C2

n

{ 1 0 < z ≤ H
0 H > z

(30)

SLAB LAYER
MODEL

EXPONENTIAL
LAYER MODEL

THIN LAYER
MODEL

∆H

HH

Fig. 3.  Three profiles used to describe the level of atmospheric
turbulence:  (1) slab with uniform density, (2) thin layer with thick-
ness ∆H , and (3) exponential decayed atmosphere.
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After applying the Kolmogorov spectrum and slab model into the expression of amplitude variances,
Eq. (29), we have

〈
χ2

〉
= 4π2k2

∫ ∞

0

κdκ

∫ H

0

dzΦn(κ, z) sin
(

zκ2

2k

)
dz

= 2π2Hk2

∫ ∞

0

κdκ 0.033 C2
nκ−(11/3)

(
1 − sin(Hκ2/k)

Hκ2/k

)

= 0.651k2HC2
n

∫ ∞

0

dκ

κ8/3

(
1 − sin(Hκ2/k)

Hκ2/k

)
(31)

Substituting ζ = Hκ2/k, we have the following for the point receiver:

〈
χ2

〉
= 0.326C2

nH11/6k7/6

∫ ∞

0

dζ

ζ11/6

(
1 − sin ζ

ζ

)
(32)

or finally

〈
χ2

〉
= 0.307C2

nH11/6k7/6 (Np)2 (33)

B. Thin Layer

A thin layer of thickness ∆H often is used to describe a turbulent layer or a cloud layer at a fixed
altitude H. This is defined as [4–6]

C2
n(z) = C2

n

{ 1 H < z < H + ∆H
0 otherwise

(34)

When ∆H << H, we have

〈
χ2

〉
= 4π2k2

∫ ∞

0

κdκΦn(κ, z)
∫ ∞

0

sin
(

zκ2

2k

)
dz

= 2π2k2

∫ ∞

0

κdκΦn(κ, z)
∫ ∞

0

[
1 − cos

(
zκ2

2k

)]
dz

= 0.651k2∆HC2
n

∫ ∞

0

dκ

κ8/3

[
1 − cos

(
Hκ2

k

)]
(35)

Using a substitution of ζ = Hκ2/k, we have

〈
χ2

〉
= 0.326C2

n∆HH5/6k7/6

∫ ∞

0

dζ

ζ11/6
[1 − cos ζ] = 0.563C2

n∆HH5/6k7/6 (Np)2 (36)
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C. Exponential Model

In the third case, we assume that atmospheric turbulence level has its maximum value at the Earth’s
surface and decreases exponentially with altitude. It is defined as

C2
n(z) = C2

n(0) exp
(
− z

H

)
(37)

where H is the scale height. Thus,

Φn(κ, z) = 0.033κ−(11/3)C2
n(0) exp

(
− z

H

)
(38)

We have

〈
χ2

〉
= 4π2k2

∫ ∞

0

κdκ 0.033 κ−(11/3)C2
n(0)

∫ ∞

0

exp
(
− z

H

)
sin

(
zκ2

2k

)
dz

= 0.651k2C2
n(0)

∫ ∞

0

dκ

κ8/3

∫ ∞

0

exp
(
− z

H

) [
1 − cos

(
zκ2

2k

)]
dz

= 0.651k2C2
n(0)H

∫ ∞

0

dκ

κ8/3

(
Hκ2

k

)2

1 +
(

Hκ2

k

)2 (39)

Using a substitution of ζ = Hκ2/k, we have

〈
χ2

〉
= 0.326k7/6C2

n(0)H11/6

∫ ∞

0

dζ

ζ11/6

ζ2

1 + ζ2
= 0.530k7/6C2

n(0)H11/6 (40)

Using the integral result, Eq. (A-10), we have

〈
χ2

〉
= 0.530k7/6C2

n(0)H (41)

for an exponential model.

D. Oblique Paths

For an oblique path with elevation angle ϑ, we should replace H with H csc ϑ. Amplitude variances
for three profile models with a point receiver become

〈
χ2

〉
= 0.307C2

nk7/6H11/6(csc ϑ)11/6 (Np)2 for a slab model (42)

〈
χ2

〉
= 0.563C2

nk7/6∆HH5/6(csc ϑ)11/6 (Np)2 for a thin layer model (43)

〈
χ2

〉
= 0.530C2

n0
k7/6H11/6(csc ϑ)11/6 (Np)2 for an exponential model (44)
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V. Antenna Aperture-Averaging Effects

For a receiving antenna with effective antenna radius ar, amplitude variance is an integration over the
entire antenna area [2,4,7,8]:

〈χ2〉 =
1

A2

∫∫
A

d2σ1

∫∫
A

d2σ2 〈χ(ρ1)χ(ρ2)〉 =
1

π2a2
r

∫ ar

0

ρ1dρ1

∫ 2π

0

dφ1

×
∫ ar

ρ2dρ2

∫ 2π

0

dφ2 〈χ(ρ1, φ1)χ(ρ2, φ2)〉 (45)

Figure 4 shows two surface elements, σ1 and σ2, with a scalar distance |σσσ1 − σσσ2| on the receiving
aperture. Spatial cross-correlation between two surface elements will generate a joint term J0(κ |σσσ1 − σσσ2|)
for the two-dimensional integration below.

Based on the spatial covariance for a plane wave shown in Appendix B, the joint amplitude variances
from two adjacent elements within an antenna dish can be expressed as

〈χ(σ1)χ(σ2)〉 = 4π2k2

∫ ∞

0

κdκΦn(κ)J0 (κ |σσσ1 − σσσ2|)
∫ H

0

sin2

(
zκ2

2k

)
dz

= 2π2k2

∫ ∞

0

κdκΦn(κ)J0 (κ |σσσ1 − σσσ2|)
∫ H

0

[
1 − cos

(
zκ2

k

)]
dz

= 2π2Hk2

∫ ∞

0

κdκΦn(κ)J0 (κ |σσσ1 − σσσ2|)
[
1 − sin(Hκ2/k)

Hκ2/k

]
(46)

ρ1
ϕ1

2

ϕ 2
ρ1

ρ2

O

ar

Fig. 4. A two-dimensional integration is performed over a circular
dish antenna with finite radius ar .  Two surface elements show
how they are cross-correlated, and the fluctuations received by
surface elements are spatially averaged out due to the reduced
gain factor for a large aperture antenna.
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The spatial average over the entire antenna surface is

〈χ2〉 =
2Hk2

a2
r

∫ ar

0

ρ1dρ1

∫ 2π

0

dφ1

∫ ar

0

ρ2dρ2

∫ 2π

0

dφ2

×
∫ ∞

0

κdκΦn(κ)J0 (κ |ρρρ1 − ρρρ2|)
[
1 − sin(Hκ2/k)

Hκ2/k

]

=
2Hk2

a2
r

∫ ∞

0

κdκΦn(κ)
[
1 − sin(Hκ2/k)

Hκ2/k

] ∫ ar

0

ρ1dρ1

∫ 2π

0

dφ1

∫ ar

0

ρ2dρ2

×
∫ 2π

0

dφ2J0

(
κ
√

ρ2
1 + ρ2

2 − 2ρ1ρ1 cos(φ2 − φ1)
)

(47)

The addition theorem for Bessel functions separates the integrations as shown in Eq. (A-3). The
angular integrations result in only one term (n = 0) in the series left. Using the expression shown in
Eq. (A-4), we have

1
π2a4

r

∫ ar

0

ρ1dρ1

∫ 2π

0

dφ1

∫ ar

0

ρ2dρ2

∫ 2π

0

dφ2J0

(
κ
√

ρ2
1 + ρ2

2 − 2ρ1ρ1 cos(φ2 − φ1)
)

=
[
2J1(κar)

κar

]2

(48)

Thus,

〈χ2〉 = 4π2k2

∫ ∞

0

κdκ

∫ H

0

dzΦn(κ, z) sin2

(
zκ2

2k

) [
2J1(κar)

κar

]2

(49)

or

〈χ2〉 = 2π2k2

∫ ∞

0

κdκ

∫ H

0

dzΦn(κ, z)
[
1 − cos

(
zκ2

k

)] [
2J1(κar)

κar

]2

(50)

where the term (2J1(κar)/κar)
2 is the aperture-averaging wavenumber weighting function (or the Airy

function). It acts like a lowpass filter and eliminates the contribution from those turbulence eddies smaller
than the radius of the receiver, ar.

A. Slab Model

Applying the Kolmogorov spectrum with a slab profile model of thickness H, we have

〈χ2〉 = 2π2Hk2

∫ ∞

0

κdκ0.033C2
nκ−(11/3)

(
1 − sin(Hκ2/k)

Hκ2/k

) [
2J1(κar)

κar

]2

= 0.651k2HC2
n

∫ ∞

0

dκ

κ8/3

(
1 − sin(Hκ2/k)

Hκ2/k

) [
2J1(κar)

κar

]2

= 0.307C2
nH11/6k7/6G1

(
ar

√
2π

Hλ

)
(Np)2 (51)
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where ar

√
2π/Hλ is the ratio of antenna size, ar, over the first Fresnel zone size,

√
Hλ/2π. After we use

substitutions of η = ar

√
2π/Hλ = ar

√
k/H, ζ = Hκ2/k, the gain factor can be defined as

G1(η) = 1.060
∫ ∞

0

dζ

ζ11/6

(
1 − sin ζ

ζ

) [
2J1

(
η
√

ζ
)

η
√

ζ

]2

(52)

The integral G1(η) cannot be solved analytically unless some approximations or simplifications are
made. However, we can solve it by the numerical integration. The numerical solution for the gain factor
is shown in Fig. 5 as a function of the ratio (η) of antenna size over the first Fresnel zone size. If we
normalize Eq. (51) by the point receiver solution, Eq. (33), we will have

〈χ2(ar)〉
〈χ2(0)〉 = G1(η) (53)

The ratio of amplitude fluctuations between a finite aperture receiver and a point receiver is its gain
factor. As expected, the antenna aperture plays a role in smoothing the amplitude fluctuations, because
the gain factor, G(η), is always less than 1 and also rapidly decreases with increasing aperture size. Thus,
the amplitude variations for a large antenna are always less than those for a point antenna.
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Fig. 5.  Gain factors for three types of turbulent layer
models as a function of antenna size.  The ITU model
is also shown with a cutoff at G (η) = 0.1.
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B. Thin Layer

Assuming a layer of thickness ∆H at altitude H and also taking ∆H << H, we have

〈χ2〉 = 0.563C2
n∆HH5/6k7/6G2

(
ar

√
2π

Hλ

)
(Np)2 (54)

where

G2(η) = 0.578
∫ ∞

0

dζ

ζ11/6
[1 − cos ζ]

[
2J1

(
η
√

ζ
)

η
√

ζ

]2

(55)

The gain factor for a thin layer model is plotted in Fig. 5.

C. Exponential Model

Similarly, we have

〈χ2〉 = 0.530C2
n0

H11/6k7/6G3

(
ar

√
2π

Hλ

)
(Np)2 (56)

where

G3(η) = 0.615
∫ ∞

0

dζ

ζ11/6

ζ2

1 + ζ2

[
2J1

(
η
√

ζ
)

η
√

ζ

]2

(57)

The gain factor for an exponential model is also shown in Fig. 5. As compared with the other two models,
the exponential model has the largest effect. We also see that all gain factors go to the unit when η −→ 0.
The amplitude variance becomes the solution of a point receiver. The gain factor does not depend on
either antenna size or Fresnel length alone. It strongly depends on the ratio (η) of antenna size over the
first Fresnel length.

D. Comparison with the International Telecommunication Union Model

Crane and Blood3 generate a piecewise function to express the antenna aperture-averaging gain factor
for amplitude scintillation. This function defines the International Telecommunication Union (ITU) model
as

G(ar) =




1.0 − 1.4
(
ar/

√
Hλ

)
for 0 ≤ ar/

√
Hλ ≤ 0.5

0.5 − 0.4
(
ar/

√
Hλ

)
for 0.5 < ar/

√
Hλ ≤ 1.0

0.1 for 1.0 < ar/
√

Hλ

(58)

The results for this model are also shown in Fig. 5. We can see that the ITU model fits a slab model very
well when ar/

√
Hλ < 1.4.

3 R. K. Crane and D. W. Blood, Handbook for the Estimation of Microwave Propagation Effects-Link Calculations for
Earth-Space Paths, Tech. Rep. 1, Document P.7376-TR1 (internal document), prepared for NASA Goddard Space Flight
Center, Greenbelt, Maryland, June 1979.
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VI. Scaling Factors

Based on the above analytical solutions, we can obtain the following amplitude scintillation depen-
dences on the wavelength, antenna size, and elevation angles.

A. Frequency Dependence

Noting the electromagnetic wavenumber is k = 2π/λ, we have for a point receiver

〈
χ2

1

〉
〈χ2

2〉
=

(
k1

k2

)7/6

=
(

λ2

λ1

)7/6

≈
(

f1

f2

)7/6

(59)

when the signal’s wavelength and frequency have the relation of λf = υg and assuming that the wave
propagation speed, υg, is a constant.

For example, relative to X-band (8.4 GHz), the amplitude variance at Ka-band (32 GHz) will increase
by a factor of 4.8.

The gain factor for a finite aperture antenna expressed as a function of wavelength is

〈
χ2

1(λ1)
〉

〈
χ2

2(λ2)
〉 =

(
λ2

λ1

)7/6 G

(
ar

√
2π

Hλ1

)

G

(
ar

√
2π

Hλ2

) (60)

B. Antenna Size

Normalizing Eqs. (51) through (53) by Eqs. (33), (36), and (41), respectively, we have

〈χ2(ar)〉
〈χ2(0)〉 = G

(
ar

√
2π

Hλ

)
(61)

which also depends on what type of turbulent profile models one chooses.

C. Elevation Angle

From Expressions (42) through (44), we can find

〈
χ2(ϑ1)

〉
〈χ2(ϑ2)〉

=
(

sinϑ2

sinϑ1

)11/6

for ϑ ≥ 5 deg (62)

The relation will be broken up at 5 deg and below because of multipath effects at low elevation angles.

VII. DSN Goldstone Receiver

Now we can apply these analytic solutions to a 34-m parabolic dish antenna at the Goldstone DSN
site at Ka-band. We will use the following parameters for the Goldstone site calculation [9,10]:
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C2
n0

= 0.5 × 10−13
(
m−(2/3)

)

λ = 0.01 (m)

H = 8.0 × 103 (m)

ar = 34/2 × 55% (m)

Here we have assumed that the dish antenna has a 55 percent efficiency relative to its physical radius. We
will show an example of how to calculate the amplitude variations, as follows. From Fig. 6, we can find
that, when η = ar

√
2π/λH = 2.62, G1(η) = 0.075 for a slab model; G2(η) = 0.12 for a thin layer model;

and G3(η) = 0.19 for an exponential model. Thus, when elevation angle ϑ = 90 deg, for an exponential
model we have, from Eq. (56),

〈χ2〉 = 0.530C2
n0

H11/6k7/6(sinϑ)−(11/6)G3

(
ar

√
2π

Hλ

)
(Np)2 (63)

〈
χ2

〉
= 1.33 × 10−4 (Np)2 (64)

Its root of mean square (rms), that is, amplitude fluctuation, is

χrms = 1.15 × 10−2 (Np)

Using Eq. (6) and converting to decibels, we have

χrms = 0.05 (dB)
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Fig. 6.  Elevation-angle dependence of amplitude fluctuation (in
decibels) for both a 34-m DSN antenna and a point receiver for
three types of atmospheric profile models.
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When elevation angle ϑ = 20 deg,

〈
χ2

〉
= 9.51 × 10−4 (Np)2

χrms = 3.08 × 10−2 (Np)

χrms = 0.134 (dB)

Figure 6 shows the amplitude fluctuations for elevation angles from 20 deg to 90 deg for three atmo-
spheric turbulent models for a DSN 34-m antenna at Goldstone; the DSN antenna will not operate below
the 20-deg elevation angle for Ka-band. For comparison, the amplitude variations for a point receiver
also are shown in the figure. To calculate the amplitude fluctuation for a thin layer, we have assumed a
400-m layer thickness. Of the three models, the exponential model has high amplitude variations because
of its large gain factor. The ratio of amplitude changes between a receiver with finite radius ar and a
point receiver is

χrms(ar)
χrms(0)

=

√√√√G

(
ar

√
2π

Hλ

)
(65)

VIII. Summary

On the basis of the Kolmogorov turbulence theory, we have derived all analytical solutions for the
amplitude variances for a finite aperture antenna for the DSN scenario. Through this analytical study, we
found that amplitude scintillation is an important factor that cannot be neglected under the clear weather
at Ka-band, even for the large antenna used at Goldstone. At low elevation angles, the scintillation
intensity remains high. For example, at a 20-deg elevation, amplitude fluctuation can be as much as
0.13 dB for a 34-m DSN antenna for an exponential turbulent model. If these fast fadings are further
superimposed on some slow fadings (caused by water vapor density changes), deep fading will definitely
cause a problem for the DSN link. Using these fluctuation values, we can further study power spectra
and fading rates of the amplitude scintillations [11].

A receiver antenna with finite aperture will have different effects from a point receiver on the scin-
tillation intensity and temporal characteristics. Because the receiver’s output is a spatial average of the
wavefront fluctuations over the aperture, this results in the observed fluctuations being smaller than
those received by a point receiver. We can see that the gain factor for a finite aperture antenna strongly
depends on the ratio (η) of antenna size over the first Fresnel zone size. The gain factor also is dependent
on what types of atmospheric turbulence profile models we use.

These results should help in system design and fading prediction for Ka-band downlink for a low-
margin telecommunication system such as the DSN. It also establishes the theoretical basis for any future
experimental comparison at Ka-band. The fading study on atmospheric scintillation also provides us a
possible mitigation approach in controlling the uplink power based on predicted amplitude fluctuations.
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Appendix A

Bessel Functions and Other Integral Equations

The Bessel functions are as follows:

∫ 2π

0

dφ exp
[
rκr cos(φ − ω)

]
= 2πJ0(κrr) (A-1)

∫ ∞

0

J0(ax) cos(bx2)xdx =
1
2b

sin
(

a2

4b

)
(A-2)

J0

(
κ
√

ρ2
1 + ρ2

2 − 2ρ1ρ1 cos(φ2 − φ1)
)

=
∞∑
0

εnJn(κρ1)Jn(κρ2) cos [n(φ2 − φ1)] (A-3)

1
a2

∫ a

0

xJ0(xκ)dx =
J1(κa)

κa
(A-4)

The Delta functions are as follows:

∫ R

0

dx

∫ R

0

dx′f(x)g(x′) exp
[
iκx(x − x′)

]
= 2πδ(κx)

∫ R

0

dxf(x)g(x) (A-5)

δ(κ cos ψ) =
1
κ

δ(cos ψ) (A-6)

∫ π

0

dψf(ψ)δ(κ cos ψ) =
1
κ

f
(π

2

)
(A-7)

The integral solutions are as follows:

∫ ∞

0

dζ

ζ11/6

(
1 − sin ζ

ζ

)
= 0.943 (A-8)

∫ ∞

0

dζ

ζ11/6
[1 − cos ζ] = 1.729 (A-9)

∫ ∞

0

xm−1dx

1 + xn
=

π

n sin
(mπ

n

) (A-10)
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Appendix B

Antenna Aperture-Averaging Equation

The amplitude fluctuations for a plane wave measured at separated locations can be described by

χ(R) = − 2k2

∫
d3rA(R, r)δn(r) (B-1)

χ(R + ∆ρρρ) = − 2k2

∫
d3rA(R + ∆ρρρ, r)δn(r)

= − 2k2

∫
d3r′A(R, r′)δn(r′ + ∆ρρρ) (B-2)

where ∆∆∆ρρρ = ρρρ2 − ρρρ1 is a vector in a plane of a receiver antenna:

〈χ(R)χ(R + ∆ρρρ)〉 = 4k4

∫
d3rA(R, r)

∫
d3r′A(R, r′) 〈δn(r)δn(r′ + ∆ρρρ)〉 (B-3)

where

〈δn(r, t)δn(r′ + ∆ρρρ, t)〉 =
∫

d3κΦn(κ) exp
[
iκκκ · (rrr − rrr′ − ∆ρρρ)

]
(B-4)

Thus,

〈χ(R)χ(R + ∆ρρρ)〉 = 4k4

∫
d3rA(R, r) exp(iκκκ · rrr)

∫
d3r′A(R, r′) exp(iκκκ · rrr′)

×
∫

d3κΦn(κ) exp(iκκκ · ∆ρρρ) (B-5)

The three-dimensional integration on κ is written in spherical coordinates as

∫ ∞

0

dκ3 exp(iκκκ · ∆ρρρ) =
∫ ∞

0

κ2dκ

∫ π

0

dψ sinψδ(κ cos ψ)
∫ 2π

0

dω exp(iκκκ · ∆ρρρ)

In the usual case, ψ = π/2 and sinψ = 1, so that

∫ ∞

0

dκ3 exp(iκκκ · ∆ρρρ) =
∫ ∞

0

κdκ

∫ 2π

0

dω exp(iκκκ∆ρ cos ω) = 2π

∫ ∞

0

κdκJ0 (κ∆ρ)

because
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4k4

∫
d3rA(R, r) exp(iκκκ · rrr)

∫
d3r′A(R, r′) exp(iκκκ · rrr′) = 4π2k2

∫ H

0

dz sin
(

zκ2

2k

)

Thus,

〈χ(R)χ(R + ∆ρρρ)〉 = 4π2k2

∫ H

0

dz sin
(

zκ2

2k

) ∫ ∞

0

dκκΦn(κ)J0(κ∆ρ) (B-6)

An additional term J0(κ∆ρ) that spatially joins together two elements separated by ∆ρ is included in
the spatial covariance. For the antenna aperture averaging, we have

〈χ(σ1)χ(σ2)〉 = 4π2k2

∫ ∞

0

κdκΦn(κ)J0(κ |σσσ1 − σσσ2|)
∫ H

0

sin2

(
zκ2

2k

)
dz (B-7)

where σσσ1 and σσσ2 are, respectively, two elements within the antenna.
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